洗衣机的新功能
作文 09-212
06-05
手抄报三:时钟的例题精讲
【例 1】 王叔叔有一只手表,他发现手表比家里的闹钟每小时快 30 秒.而闹钟却比标准时间每小时慢 30 秒,那么王叔叔的手表一昼夜比标准时间差多少秒?
【解析】 闹钟比标准的慢 那么它一小时只走(3600-30)÷3600个小时,手表又比闹钟快 那么它一小时走(3600+30)/3600个小时,则标准时间走1小时 手表则走(3600-30)÷3600X(3600+30)÷3600个小时,则手表每小时比标准时间慢1—【(3600-30)÷3600X(3600+30)÷3600】=1—14399÷14400=1÷14400个小时,也就是1÷14400X3600=四分之一秒,所以一昼夜24小时比标准时间慢四分之一乘以24等于6秒
【解析2】由题干可得手表:闹钟=(3600+30):3600,闹钟:标准=(3600-30):3600,可以得到手表:标准=(3600+30)*(3600-30):3600*3600,则标准时间走1小时(3600秒),手表走(3600+30)*(3600-30)/3600/3600*3600秒,那么1昼夜24小时手表共走了(3600+30)*(3600-30)/3600/3600*24*3600=86394秒,而一昼夜共有24*3600=86400秒,故相差86400-86394=6秒
【巩固】 小强家有一个闹钟,每时比标准时间快3分。有一天晚上10点整,小强对准了闹钟,他想第二天早晨6∶00起床,他应该将闹钟的铃定在几点几分?
【解析】 6:24
【巩固】 小翔家有一个闹钟,每时比标准时间慢3分。有一天晚上8:30,小翔对准了闹钟,他想第二天早晨6∶30起床,于是他就将闹钟的铃定在了6∶30。这个闹钟响铃的时间是标准时间的几点几分?
【解析】 7点
【巩固】 当时钟表示1点45分时,时针和分针所成的钝角是多少度?
【解析】 142.5度
【例 2】 有一座时钟现在显示10时整.那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?
【解析】分针每小时走一圈12格,时针走1格,分针每小时比时针多走12-1=11格,每分钟多走11/60格。10时整的时候,时针与分针相距10格,第一次重合,分针要在相同的时间里比时针多走10格,所用时间是:10÷11/60=54又6/11(分钟)第二次重合,分针要比时针多走12格,所用时间是:12÷11/60=65又5/11(分钟)
【巩固】 钟表的时针与分针在4点多少分第一次重合?
【解析】 此题属于追及问题,追及路程是20格,速度差是12/60-1/60 ,所以追及时间是:20/(12/60-1/60 ) (分)。
也可以用度数算:4*30/5.5=240/11分钟
【巩固】 现在是3点,什么时候时针与分针第一次重合?
【解析】 根据题意可知,3点时,时针与分针成90度,第一次重合需要分针追90度, (分)
【例 3】 钟表的时针与分针在8点多少分第一次垂直?
【解析】 此题属于追及问题,但是追及路程是4 格(由原来的40格变为15格),速度差是 ,所以追及时间是: (分)。
【例 4】 2点钟以后,什么时刻分针与时针第一次成直角?
【解析】 根据题意可知,2点时,时针与分针成60度,第一次垂直需要90度,即分针追了90+60=150(度), (分)
【例 5】 8时到9时之间时针和分针在“8”的两边,并且两针所形成的射线到“8”的距离相等.问这时是8时多少分?
【解析】 8点整的时候,时针较分针顺时针方向多40格,设在满足题意时,时针走过x格,那么分针走过40-x格,所以时针、分针共走过x+(40-x)=40格.于是,所需时间为 分钟,即在8点 分钟为题中所求时刻.
【例 6】 现在是10点,再过多长时间,时针与分针将第一次在一条直线上?
【解析】 时针的速度是 360÷12÷60=0.5(度/分),分针的速度是 360÷60=6(度/分),即 分针与时针的速度差是 6-0.5=5.5(度/分),10点时,分针与时针的夹角是60度, ,第一次在一条直线时,分针与时针的夹角是180度,,即 分针与时针从60度到180度经过的时间为所求。,所以 答案为 (分)
【巩固】 在9点与10点之间的什么时刻,分针与时针在一条直线上?
【解析】 根据题意可知,9点时,时针与分针成90度,第一次在一条直线上需要分针追90度,第二次在一条直线上需要分针追270度,答案为 (分)和 (分)
【例 7】 晚上8点刚过,不一会小华开始做作业,一看钟,时针与分针正好成一条直线。做完作业再看钟,还不到9点,而且分针与时针恰好重合。小华做作业用了多长时间?
【解析】 根据题意可知, 从在一条直线上追到重合,需要分针追180度, (分)
【例 8】 某人下午六时多外出买东西,出门时看手表,发现表的时针和分针的夹角为110°,七时前回家时又看手表,发现时针和分针的夹角仍是110°.那么此人外出多少分钟?
【解析】 如下示意图,开始分针在时针左边110°位置,后来追至时针右边110°位置.
于是,分针追上了110°+110°=220°,对应 格.所需时间为 分钟.所以此人外出40分钟.
评注:通过上面的例子,看到有时是将格数除以 ,有时是将格数除以 ,这是因为有时格数是时针、分针共同走过的,对应速度和;有时格数是分针追上时针的,对应速度差.对于这个问题,大家还可以将题改为:“在9点多钟出去,9点多钟回来,两次的夹角都是110°,答案还是40分钟.
【例 9】 上午9点多钟,当钟表的时针和分针重合时,钟表表示的时间是9点几分?
【解析】 时针与分针第一次重合的经过的时间为: (分),当钟表的时针和分针重合时,钟表表示的时间是9点 分。
【例 10】 小红上午8点多钟开始做作业时,时针与分针正好重合在一起。10点多钟做完时,时针与分针正好又重合在一起。小红做作业用了多长时间?
【解析】 8点多钟时,时针和分针重合的时刻为: (分)10点多钟时,时针和分针重合的时刻为: (分) ,小红做作业用了 时间
【例 11】 小红在9点与10点之间开始解一道数学题,当时时针和分针正好成一条直线,当小红解完这道题时,时针和分针刚好第一次重合,小红解这道题用了多少时间?
【解析】 9点和10点之间分针和时针在一条直线上的时刻为: (分),时针与分针第一次重合的时刻为: (分),所以这道题目所用的时间为: (分)
【例 12】 一部动画片放映的时间不足1时,小明发现结束时手表上时针、分针的位置正好与开始时时针、分针的位置交换了一下。这部动画片放映了多长时间?
【解析】 根据题意可知,时针恰好走到分针的位置,分针恰好走到时针的位置,它们一共走了一圈,即 (分)
【例 13】 有一座时钟现在显示10时整。那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?
【解析】 根据题意可知,10点时,时针与分针成60度,第一次重合需要分针追360-60=300(度), (分)第二次重合需要追360度,即 分。
模块二、时间标准及闹钟问题
【例 14】 钟敏家有一个闹钟,每时比标准时间快2分。星期天上午9点整,钟敏对准了闹钟,然后定上铃,想让闹钟在11点半闹铃,提醒她帮助妈妈做饭。钟敏应当将闹钟的铃定在几点几分上?
【解析】 闹钟与标准时间的速度比是62:60=31:30, 11点半与9点相差 150分, 根据十字交叉法,闹钟走了 150×31÷30=155(分),所以 闹钟的铃应当定在11点35分上。
【例 15】 小翔家有一个闹钟,每时比标准时间慢2分。有一天晚上9点整,小翔对准了闹钟,他想第二天早晨6∶40起床,于是他就将闹钟的铃定在了6∶40。这个闹钟响铃的时间是标准时间的几点几分?
【解析】 闹钟与标准时间的速度比是 58:60=29:30 晚上9点与次日早晨6点40分相差580分, 即 标准时间过了 580×30÷29=600(分),所以 标准时间是7点。